- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Castro, Jordan (2)
-
Guan, Zhibin (2)
-
Yokoyama, Kosuke (2)
-
Shrestha, Roman (1)
-
Tretbar, Chase (1)
-
Westworth, Xavier (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Creating a sustainable economy for plastics demands the exploration of new strategies for efficient management of mixed plastic waste. The inherent incompatibility of different plastics poses a major challenge in plastic mechanical recycling, resulting in phase‐separated materials with inferior mechanical properties. Here, this study presents a robust and efficient dynamic crosslinking chemistry that effectively compatibilizes mixed plastics. Composed of aromatic sulfonyl azides, the dynamic crosslinker shows high thermal stability and generates singlet nitrene species in situ during solvent‐free melt‐extrusion, effectively promoting C─H insertion across diverse plastics. This new method demonstrates successful compatibilization of binary polymer blends and model mixed plastics, enhancing mechanical performance and improving phase morphology. It holds promise for managing mixed plastic waste, supporting a more sustainable lifecycle for plastics.more » « less
-
Tretbar, Chase; Castro, Jordan; Yokoyama, Kosuke; Guan, Zhibin (, Advanced Materials)Abstract Sustainable development of new technologies requires materials having advanced physical and chemical properties while maintaining reprocessability and recyclability. Vitrimers are designed for this purpose; however, their dynamic covalent chemistries often have drawbacks or are limited to specialized polymers. Here, fluoride‐catalyzed siloxane exchange is reported as an exceptionally robust chemistry for scalable production of high‐performance vitrimers through industrial processing of commodity polymers such as poly(methyl methacrylate), polyethylene, and polypropylene. The vitrimers show improved resistance to creep, heat, oxidation, and hydrolysis, while maintaining excellent melt flow for processing and recycling. Furthermore, the siloxane exchange between different vitrimers during mechanical blending results in self‐compatibilized blends without any compatibilizers. This offers a general, scalable method for producing sustainable high‐performance vitrimers and a new strategy for recycling mixed plastic wastes.more » « less
An official website of the United States government
